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Long waves on the continental shelf: 
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Random fluctuations in sea level, <, in the frequency range 0.1-60 cycles per h o u ~  
were measured along the coast near Oceanside, California, where the coastline and 
bottom contours are fairly straight and parallel for 30 km. The two-dimensional 
covariance 

was computed for points separated by various distances rj along the coast. The 
R(% 7 )  = (<(?I, t )  C(Y + 7, t + 7 ) )  

Fourier transform P P  

gives the contribution towards the ‘energy’ (g2) per unit temporal frequency f 
per unit spacial frequency (long-shore component) n. It is found that most of the 
energy is confined to a few narrow bands in (f, n)  space, and these observed bands 
correspond very closely to the gravest trapped modes (or edge waves) computed 
for the actual depth profile. The bands are 0.02 cycles per km wide, which equals 
the theoretical resolution of the 30 km array. Very roughly S ( f ,  n) w S(f, - n), 
corresponding to equal partition of energy between waves travelling up and down 
the coast. Theory predicts ‘Coriolis splitting’ between the lines f* (n) corre- 
sponding to these oppositely travelling waves, but this effect is below the limit of 
detection. The principal conclusion is that most of the low-frequency wave 
energy is trapped. 

1. Introduction 
The spectrum of ocean waves has a deep trough in the frequency range 0.1- 

60 cycles per hour (c/h) lying between the ocean tides and swell. Except for the 
occasional occurrence of ‘tsunamis ’ (or ‘tidal waves ’) these low-frequency low- 
energy waves typically have R.M.S.-amplitudes of 1 cm. as compared to lo2 cm 
for tides or swell. Typical lengths of these 1 cm waves are from 5 to 100 km, and 
our interest derives from the fact that these dimensions are characteristic of the 
width of the continental shelf. Accordingly, we should expect (i) constructive 
interference between incident and reflected waves of appropriate dimensions, 
and (ii) the trapping of energy into a continental wave-guide, corresponding to 
the well-known leaky modes and trapped modes of wave-guide theory; in the 
former case energy is re-radiated into the deep sea, whereas in the latter case it 
remains trapped indefinitely under idealized conditions. 
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The first mathematical treatment of trapped waves over an inclined bottom 
goes back to Stokes, who considered his solution a curiosity (Lamb 1932, p. 447). 
Ursell(l952) generalized the solution to an infinite set of discrete modes, including 
the Stokes ‘edge waves’ as the fundamental mode. Ultimately all these solutions 
decay monotonically in a seaward direction, so that the energy remains trapped 
near shore; hence the name ‘edge waves’. 

The first observational evidence for the existence of edge waves occurred in 
August 1954. The hurricane CAROL formed near the Bahamas and then moved 
northward along the American East Coast at something like 17 m sec-I. Redfield 
& Miller (unpublished manuscript) noted that the passage of the hurricane was 
followed by a series of ‘resurgences’ in sea level with a period of 5.5 h and a 
height of 1 m. Munk, Snodgrass & Carrier (1956) suggested that the resurgences 
were in fact a wake of edge waves. Their argument is as follows: a wake behind a 
disturbance travelling at a speed U is characterized by a phase velocity C = U ,  
and a period T (or wavelength A) appropriate to this phase velocity. For Stokes 
edge waves over a bottom of slope /3 we then have 

2nU = 2nC = gPT, (1) 
which yields T = 5.9 h for U = 17 m sec-l, as compared to the 
observed period of 5.5 h. Further support for the edge wave hypothesis comes 
from Greenspan’s (1956) calculations that the observed amplitudes are consistent 
with the dimensions of the travelling pressure spot. But these very long periods 
are not negligible as compared to the length of day, and Reid (1958) has shown 

= 5 x 

FIUURE 1. Topography off the coast of southern California (depth in fathoms). Location of 
instruments is indicated. Theoretical calculations were made for sections a-b and c-d, 
tending in the direction 236” T. 
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that the evidence somewhat deteriorates when the effect of Coriolis force is taken 
into account. Munk, Snodgrass & Carrier have also observed dispersive wave 
packets at Oceanside, California, following a sharp atmospheric gust at La Jolla 
(figure l ) ,  the propagation of the packets being in accordance with the expected 
behaviour of edge waves. Donn & Ewing (1956) and Donn (1959) identified 
destructive waves along the Great Lakes with edge waves generated by travelling 
squall lines. We have generated edge waves in a wave tank, and found no diffi- 
culty in doing so even with crude equipment. (But we failed to generate observ- 
able edge waves by racing a destroyer at 31 knots along the 20-fathom line from 
La Jolla to Oceanside.) 

So far the observational evidence refers to relatively clear-cut wave packets 
generated by impulsive or travelling sources of some simplicity. The question 
arises whether the complex wiggles which are always present on coastal tide 
records are associated with an ‘edge-wave noise’. Power spectra of many low- 
frequency wave records (Munk, Snodgrass & Tucker 1959) revealed reproducible 
peaks at any given station associated with the width of shelf at this station. But 
i t  was not clear whether these were leaky or trapped waves, or in which direction 
they were travelling. To resolve these ambiguities, we performed a cross-spectral 
analysis between simultaneous low-frequency records at La Jolla and Oceanside 
(Munk et al. 1959, p. 360). The principle is as follows: let 

C(y, t )  = a cos 27r(ny - f t  + #) 

designate the departure in coastal water level associated with an elementary 
wave train at some distance y measured along shore. Assume stationarity in y 
and t ,  and random 4. The cross-correlation between records at a station at y 
and one a t  y+q is then given by the time average 

We may now interpret +a2 as the contribution S(f) Sf from all elementary wave 
trains in a narrow frequency band f & +Sf towards the variance: 

The expression 
(C2> = 0 )  = J S(f) df 

defines the (normalized) 00- and quadrature spectra. For the case of Stokes 
edge waves (equation (1)) comparison of (2) and (3) gives 

cdr,f 1 + i & N ( r , . f )  = exp (i2nng) = exp [i(4i .2p/gP)f21. 

For a fixed separation 7, the cross-spectrum oscillates with frequency as exp (if2). 

Instead, we found that CN(7,f) vanishes after just one zero crossing, and 
QN(7, f )  is negligible throughout. At the time, the result appeared to contradict 
the edge-wave hypothesis. (We now know that QN is small because nearly equal 
energy is transmitted up and down the coast, and C, is damped because of inter- 
ference between multiple modes.) The experiment was repeated for the broad 
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Argentinian Shelf which is noted for its low-frequency waves, but all we really 
learned from the cross-spectral analysis was a clock error at one of the tide 
stations (Inman, Munk & Balay 1961). 

So far then, the experiments had involved comparison of wave records at two 
coastal points. The complementary geometry involves two records separated 
along a line norma2 to shore. Here we could make good use of San Clemente Island 
about 100 km from the coast and almost half-way out on southern California’s 
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FIGURE 2. Profiles e b  and c-d (for location, see figure 1). The measured profile has been 
approximated by a series of steps (the first 29 are too small to be shown). The lower figure 
shows the continuation of a-b on a contracted scale, and the steps by which it has been 
approximated. 

continental borderland (Snodgrass, Munk & Miller 1962). This is a hilly sea bottom 
averaging 0.6 km in depth and 250 km in width; beyond it the depth drops off 
sharply to 3-6 km. At the very low frequencies we found the two records highly 
coherent and in phase, as expected; there is a phase reversal at 0.7 c/h, thus 
indicating that above this frequency there is a nodal line between island and 
coast. A second reversal occurs near 1.7 c/h. Again, we found the quadrature 



Long waves on the continental shelf 533 

spectra to be small, and the co-spectra to decay rapidly with increasing fre- 
quency. Our interpretation was that comparable energies must be present in 
various modes. 

We had then reached the conclusion that the wave energy is distributed in a 
most complicated way among the modes. A single station does not help, and even 
two stations are inadequate to decipher the situation. What is needed is a 
station array, yielding R(q,7) over a range of values of the station separation 7, 
from which the two-dimensional spectrum 

fhf 1 = JJWL 7 )  exp C2ni(nq +f7)1 dqd7 

can be computed without speculation and ambiguity. Here n is the long-shore 
component of the wave-number, measured in cycles per km (not radians per km), 
so that f and n are comparable units of temporal and spatial frequency. Accord- 
ingly, X(n, f) is the energy per unit temporal frequency per unit spatial frequency, 
in units of pgL2(cycle/T)-l (cycle/l)-l = pgL3T; 

the constant factor pg is usually omitted. The integration 
c 

yields the one-dimensional power spectrum (units L2T). This array experiment 
has now been performed with, as we shalI show, quite definitive results; we wish 
we had done it sooner and not attempted the many experimental shortcuts. 

2. Trapped and leaky modes 
Figure 3 shows the computed (f, n) diagram for profiles +b and c-d (figures 1 

and 2). I n  the computation the smooth depth profiles are represented by a series 
of discontinuous steps. The equations are solved for each constant depth ‘layer’, 
and the solution patched by requiring continuity in the flux of mass and 
momentum across the steps. The procedure is best regarded as a scheme for 
numerically integrating the differential equations and it has been demonstrated 
(Volterra 1887) that the precise solution can be approached to any required 
precision by making the steps sufficiently small. Here the bottom profile is 
represented by 38 layers, starting with very narrow and shallow layers a t  the 
coast. The 38th layer is assumed to extend indefinitely a t  a depth of 915m. In  
fact, the continental borderland does extend for almost 200 km at this average 
depth and waves shorter than 100 km can be adequately discussed ignoring what 
goes on beyond the shelf. But the drop beyond the shelf to the oceanic depths 
calls for certain re-interpretation of the (f, n) diagram ( 5  9). 

The linearized wave equation for constant depth is 
ayIat2 - c 2 v y  = 0. 

Let x be drawn seaward, and y along the coastline pointing north. If there is no 
absorption in shallow water, then all waves (trapped or leaky) have a component 
travelling parallel to shore < = q(x) exp 2ni(ny -ft), 
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and the wave profile normal to shore is determined by 

d2q/dxz -P2q =' 0, p2 = 4n2( f 2/62 - n2), 

with the solution 
q = acos$x+bsin@x CP2 ' O h )  

(4) q = a+bx 
q = acoshIplx+bsinh[PIx ( p 2 <  0). 

We are fully justified in making the shallow-water approximations; e.g. the water 
depth is everywhere small as compared to the wavelength. Then c2 = gh, and 
the water motion is proportional to V c  and uniform from top to bottom. 

CP2 = O) ,  

Cycles per kilometre 
FIGURE 3. The computed (f, n) diagram for profiles a-b (solid curves) and c-d (dashed). 
The 45' line through the origin separates the trapped modes (right) from the leaky modes 
(left). The trapped modes (edge waves) emerge from the 45" line at the cut-offfrequencies, 
which are labelled with the mode numbers 0, I, . . ., IV in accordance with the number of 
nodes between the shore (x = 0) and x = co. The area between these discrete modes is 
forbidden. To the left is the continuous spectrum associated with incident waves of any 
given frequency and direction, varying from normal incidence (n = 0) to glancing incidence 
(the 45' line). The shaded bands (or leaky modes) A, B, . . ., G include all combinations off 
and n for which the coastal wave amplitude exceeds the incident amplitude. The bands are 
drawn for profile a-b only; arrows on thef-axis (solid for a-b, dashed for c-d) give fre- 
quencies and values of maximum amplification at normal incidence. 
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The boundary condition a t  the coastline (x = 0 )  is that the flow normal to shore 
must vanish, q'(0) = 0, with q' designating dqldx. Let A be the amplitude at 
x = 0, and h, the depth of the first step. We may write 

ql(o) = A ,  h,d(O) = 0. 

Let q , (O)  and q,(A,) designate the amplitudes at the beginning (x = A,) and end 
(x = A, +A,) of the second step. The patching conditions 

qz(0) = al(Al)t h,d(O) = F,p.;(Al) 
assure continuity of water level and mass flux at x = 4,, etc. The last two condi- 
tions are conveniently combined in the form 

QA0) = Qi(Ai), ( 5 )  

where 

is the designated column matrix. 
Or($) = [ qi(z) ] 

hi 4; (x> 

Following Haskell (1953, 1960) it is now convenient to write the relations 
between Qi at the beginning and end of each step in matrix form. According to 
equations (4), these relations are 

Qi(Ai) = BQi(0) (6) 

1 C O S , ~ ~ A ~  sinp,A,lpihi where Bi = [ -/3,h,sinp,A, cospiAi 
for /3% > 0, and corresponding matrices for pi = 0 and /3: < 0. It follows from (5) 
and (6) that 

Q A O )  = Ql(Ai) = BiQi(O), 

Take first the case of trapped waves. In  order for the wave amplitude to 
remain finite over the last step we write 

qN = aexp ( -  l p N l  hNqk  = - IPNlhNaexp ( -  IpNl 

This is a system of two equations in two unknowns, a and A .  In  order that a 
solution exist, the determinant 

(9) 
must vanish. For any given value of n, the values off that cause the determinant 
to vanish are eigenvalues. Since n is a continuous parameter, the eigenvalues are 
curvesf(n). The determinant is real, and therefore has solutions only for -= 0, 
e.g. f < ncN. The line f = ncN in the (f, n) diagram where pN = 0 is therefore the 
cut-off line. 

For f > nc, the curve f(n) does not simply vanish. In  the complex f and n 
planes pAv = 0 is a branch point. The zero of equation (9) for a given mode goes 

%Zl + I p N  I hN'll 
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through the branch point a t  cut-off and on to the ‘other’ Riemann sheet of the 
complex f and n planes. As n -+ 0 the zero approaches a value of f whose real part 
is precisely one of the organ pipe frequencies associated with the stack of layers 
when the last layer is ‘rigid’ (qk(0) = 0). 

We shall not discuss this matter further but refer the reader to a paper by 
Rosenbaum (1960) for a detailed presentation. 

Figure 3 was constructed on a digital computer. The procedure differs then 
according to whether ,135 is negative or positive, i.e. whether we are to the right or 
to the left of the ‘45” line’ of slope c,. I n  the former case the program evaluates %? 
and the determinant (9) for trial values off and converges upon the eigensolutions 
by an iterative scheme. The discrete modes emerge from the 4 5 O  line at certain 
cut-off frequencies which are the zeros of %& in equation (9). I n  the latter case 
the program computes the ratio 

of coastal over incident amplitude. Shaded areas contain r > 1.  Normal inci- 
dence (n = 0) is associated with certain resonances in the open organ pipe sense. 

r(f ,n) = A/a  

0 

C 

Cycles per kilometre 

FIGURE 4. A somewhat schematic presentation of the connexions between leaky modes 
A, B, and trapped modes 0, I. Contours are for values 1 and 0.1 of the ratio, r, of costal to 
incident amplitude. Shaded bands designate r > 1. Ridges and trough lines are shown 
with selected values of r indicated. 
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Frequencies of peak amplification are indicated by the arrows along the f-axis 
of figure 3. The bands of amplification are narrow; thus the partial reflexions of 
the incident waves remove most of the energy before the wave reaches shore. The 
essential features are not changed as we deviate somewhat from normalincidence. 
But near glancing incidence the situation becomes complicated (figure 4). Here 
r < 1, i.e. the coastal amplitude is always less than the incident amplitude. 
Bands of amplification continue as ridges of minimum attenuation which curve 
sharply downward and terminate at the cut-off frequencies of the trapped modes. 
These features appear also in the simple two-step model (Snodgrass et al. 1962). 

Certain features of the (f, n) diagram deserve consideration. The slope, df/dn, of 
the discrete modes is the group velocity, and the slope, fln, of the chord is the 
phase velocity (both measured along shore). At the cut-off frequencies we find 
dfldn = fln = c, = (gh,)&; the waves are non-dispersive and travel at the velocity 
appropriate to the depth over the last step. At higher spatial frequencies the 
velocities diminish. 

There are no corresponding relationsf(n) in the continuum, since all points of 
the (f, n) diagram to the left of the 45" line are legitimate solutions. Still one is 
tempted to regard the narrow amplification bands as broadened lines, and to 
speak of group and phase velocities by referring the slope and co-ordinates of 
these bands. For example, normal incidence is then associated with zero group 
velocity and infinite phase velocity. There is justification for this point of view. 
Suppose the incident radiation were suddenly to vanish. Then waves whose 
dimensions are appropriate to the amplification bands would remain prominent 
for some time, but gradually lose energy by radiation into the deep sea. We may 
regard these waves as leaky modes, with the line broadening resulting from the 
radiational losses. 

3. Properties of a process q(y, t )  which is stationary in both variables 
The observational material g(y, t ) ,  needs to be presented in a form suitable for 

comparison with the theoretical (f, n) diagram. The transformations are first 
derived assuming complete symmetry in y and t .  The relations appear thenin the 
most compact and simple form. In  actual fact the space and time co-ordinates 
are not quite interchangeable, and some of the symmetry needs to be sacrificed 
in the discussion of the observations. 

We represent [(y, t )  as a Fourier-Stieltjes integral 

C(Y, t )  = dH(n,f) exp [ 2 4 n y  +ft)l s 
where 

in order for g to be real, and where 

dH(  - n, - f )  = dH*(n,f) 
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The spectrum S(n,f)  is real and even, S(n,f) = X( -n, -f). It follows from (10) 
to  (13) that the spectrum i s  the Fourier transform of the covariance 

W r ,  7 )  = (C(Y, t )  C(Y + 77 t + 7)h 1 
(14) 

7 )  exp [ - 2ni(ny +f7)] dyd7. 

We shell find it useful to introduce the mixed quantity 

~ ’ ( y , f )  = J R ( ~ ,  7 )  exp ( - 2nij7) d7 

= SS(n,f) exp (2lriny) an. 

Unlike S(n, f), S’(r, f) is a complex quantity, and we write 

X’(r,f) = Q‘(r,f)+iQ’(~,f). 
We refer to C’ as the (unnormalized) displaced co-spectrum, to &’ as the displaced 
quadrature spectrum. Accordingly 

Q’(r,f) = +[fl’(%f) + fJ’*(r,f)l 
= b ( n , f )  cos 2nnydn 

= f i[S(n, f )  + S( - n,f)l cos 2mnydn) 

&’(q , f )  = /+[S(n, f )  - S( - n, f )]  sin 2mpdn. 

(17) 

(18) and similarly 

Hence C‘(7, f) depends only on the mean value of the energy density for waves 
travelling up or down the coast, whereas Q’(r,f) depends on the difference. 

It will be convenient to refer to the normalized cross-spectra 

Qk(r,f> = Q‘(r,f)/fi’(O,f), Qk(r,f) = & ’ ( r L ” f ’ ( O , f ) .  (19) 

It follows from (16) and the fact that X(n, f )  is real that 

S’(0,f) = Q’(0,f) =JS(Y,f) dn = S(f) 
is the conventional power spectrum. Dividing both sides of (17) and (18) by 
S’( 0,f) and inverting the Fourier transform, we obtain 

Tf (n , f )  = [S(n,f 1 + S( -n,f )I/fi(f) = 2/Q&(r,f  1 cos 2nn?dy, 

T - ( ~ J )  = [s(n, f )  - S( -n , f ) l / s ( f )  = zji : ,  ( r , ~  sin 2nnr drl. 
1 (20) 

T+(n, f )  Sn is the fractional contribution to the power spectrum S(f) from south- 
ward waves in the band n & +Sn plus that from northward waves in the band 
-n f 48n (i.e. the fractional energy in In1 +_ 48%); T-(n,f) is the corresponding 
fractional difference, southward minus northward for positive n. 
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For the actual calculation the integrals are replaced by summations, and we 
are limited to frequencies below 1/2At and 1/2Ay by the sampling intervals At and 
Ay. I n  our experiment At = 30 sec and Ay = 0.73 km and the corresponding limits 
are 60 c/h and 0.685 c/km. The limits are known as the Nyquist frequencies. Any 
contribution from higher frequencies is folded back and appears under the 
‘alias’ of lower frequencies. The only safe procedure is to make sure that the 
spectra beyond the Nyquist frequencies are negligible as compared to the range 
of interest. After removal of sea and swell by the analogue filters this condition 
is satisfied. 

4. Observations 
Simultaneous measurements of sea bottom pressure were usually made at 

three stations. One instrument remained fixed off the boat basin north of 
Oceanside (station 0 on figure 1). The other two would occupy various positions 
north and south of station 0, extending as far as 144 Pet. miles? north and 7 Pet. 
miles south for maximum separation. The initial runs were as follows (all units in 
Pet. miles): 

Run South Central North Separations 
1 0 0 0 0, 0, 0 (calibration run) 
2 0 ?zN N 4, 1, 1+ 
3 2s 0 24 N 2,  24, 46 

The experiments were repeated until all separations 0, 8, 1, ..., 214 Pet. miles 
(with some unavoidable overlaps) were achieved. 

The instruments were installed 500 m from shore, at an average depth of 7 m. 
The location is the closest possible to shore beyond the surf zone. 

Fluctuating wave pressures at each of the stations were measured by a 
Vibrotron pressure gauge (Snodgrass, Munk & Tucker 1958); in outline, the water 
pressure changes the tension of a taut wire and so changes its natural frequency. 
The wire is maintained in oscillation by a constant voltage supplied from shore, 
and the oscillation frequency is detected as a fluctuation in the electric current. 
In  the present experiments it was necessary to attenuate the pressure changes due 
to the obvious short-period ocean waves, whose frequencies are typically 300 c/h 
and upwards. Each Vibrotron was therefore enclosed in a hydraulic filter that 
attenuated such short-period fluctuations by a factor of lo6 or more; this filter 
has been described by Snodgrass ( 1964). 

Each instrument was buried about 1 m deep into the sea bottom to protect it 
from temperature fluctuations. The time occupied by lo5 oscillations of the 
Vibrotron (about 6 sec) was measured in microseconds and recorded digitally on 
punched paper tape. These measurements were made at intervals of 30 sec, and 
the observations extended over 50 h. Thus the data consisted of about 6000 
numbers per instrument per run. The instruments were connected by underwater 
cable and the digital recording made at one site on shore. 

t 1 Peterson mile = 4800 ft. = 1.46 km. The units were dictated by the length of cable 
on a standard spool. The associated unit of spatial frequency is 1 cycle per Peterson 
mile = 0-685 c/km. We are deeply indebted to Mr Frank Peterson for making the many 
underwater installations. 
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The routine data reduction was entirely performed by computer. This consisted 
of (i) searching for data gaps and punching errors, and correcting these auto- 
matically whenever possible; (ii) removing tides by a digital high-pass filter; 
(iii) performing cross-spectral analyses for various frequency resolutions and 
ranges; (iv) correcting the spectra for instrument response; (v) plotting results 
and storing values on cards for subsequent spatial Fourier transforms. The 
reduction of the 18,000 observations taken on any one run was completed within 
a few hours of the end of the run, in time to make adjustments for the next run. 
This fulfils an old dream of carrying out data reduction almost in ‘real time’. 

The instrument sensitivity is roughly 0-003 em of water pressure per least 
count, and the instrumental noise level is negligible as compared to the observed 
intensities. When the instruments were placed side by side, the coherence 
between the records was above 0.995 between 0 and 12 c/h. 

5. Aperture synthesis 
The two-dimensional spectra are the results of measurements taken at different 

times and in somewhat different locations. This presumes stationarity with 
respect to time and space. In  radio astronomy, observations taken on successive 
nights with different antenna configurations are combined into a single ‘radio 
photograph’ of the sky, and this is referred to as ‘aperture synthesis’. It is as if 
many snapshots with different lenses are combined into a single photograph. 
Here we may regard S(n, f )  a single photograph? of the radiation coming from 
various directions (determined by f / n )  as synthesized from measurements over a 
year. 

Figure 5 shows spectra X(f), C&(r , f ) ,  &&(r,f) on two successive runs.$ The 
higher intensities during 5-6 May are probably associated with increased sea and 
swell activity (Hasselmann, Munk & MacDonald 1963), and, though some of the 
features are reproducible, there are substantial differences between the two 
spectra. In  contrast, the normalized cross-spectra are reproduced in all essential 
detail. We interpret this result to mean that in any given frequency band the 
relative energy contribution from different modes is reasonably stationary, 
whereas the total energy in the band is not. All our plots refer to the normalized 
cross-spectra. The normalized quadrature spectrum is small compared to the 
co-spectrum, indicating approximately equal energy in northward and southward 
waves. 

The situation is less satisfactory with respect to the space co-ordinate, y. When 
there is a large degree of overlap (figure 6) the results agree reasonably well. In  
the case of figure 7 the results for a 7 Pet. mile separation north of station 0 differ 

t Our plot is one-dimensional, and over many different frequency bands. The radio 
photographs are two-dimensional but monochromatic, and they are concerned only with 
the continuum. The analogy is then far from complete, but the term ‘aperture synthesis’ 
applies well in both instances. 

$ S ( f )  is taken as the geometric mean of the power spectra at the two stations separated 
by 7. S ( f )  is corrected for analogue filtering; the raw spectra drop off sharply at the 
Nyquist frequency (60 c/h). The normalized 00- and quadrature spectra are independent 
of these corrections. 
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stations 0 and 14 N. 
FIGURE 5. Comparative spectra S(f), Ci(14, f), Qi(l4, f )  on 3-4 and 5-6 May 1962 for 

FIUURE 6. Displaced co-spectra CN(9&,f) for stations 0-94N (22-25 March 1963) and 
2s-73 N (28 August to 8 September 1962). 

substantially from those south of station 0. Undoubtedly this is associated with 
a narrowing of the shelf to the south (figure 1). 

Figure 8 shows the normalized co-spectrum in (7,f) space for all measured 
values of 7, from 0 to 2 l+  Pet. miles at intervals of 4 Pet. mile. The non-station- 
arity with respect to y is obvious. The separation 54 was achieved with two 
stations located further north than for adjoining separations, and there is a 
marked kink in the contours. Even more pronounced is the switch from northern 
to southern locations a t  7 = 15 Pet. miles. To remove these kinks we have 
referred the field for 7 2 15 Pet. miles to some frequency scalef* so chosen as to 
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(1 1-14 March 1963). 
FIGURE 7. Displaced co-spectra CN(7,f) for stations 0-7 N (8-10 April 1963) and 7 S-0 
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FIGURE 8. The displaced co-spectrum, C & ( y , f ) .  Negative arem are shaded. The bottom 
display shows the mean station position relative to station 0 (figure 1) in Pet. miles. 
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FIGURE 9. The displaced co-spectrum C&(q, f) adjusted for spatial non-stationarity. 

give continuity between 143 and 15 Pet. miles, using quadratic extrapolationt 
to compute Ch(r,,f*) from C&(r , f ) .  -4 similar adjustment was made a t  54 Pet. 
miles. The adjusted contours are shown in figure 9. From now on all calculations 
refer to the fields so adjusted for spatial non-stationarity. One is, of course, 
always concerned to what extent such an adjustment has imposed conditions on 
the solution. Figures 10 and 11 show the cosine transforms of the adjusted and 
non-adjusted fields of C>(r,f) ,  and there are no essential differences. 

t A better proceduw would be to compute theoretical (f,n) diagrams for various 
distances, y, along the coast, and for each of these profiles to obtain the phase velocity, 
V(y,f), of the appropriate mode. We then replace the station co-ordinate, y, by 

and compute adjusted separations 7*(f). But the corrections are small, and the effort to 
follow this procedure is not worth while. 
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FIUURE 10. Comparison of theoretical and observed dispersion. The heavy lines 0-0, 1-1, 
. . . , IV-IV show the theoretical dispersions f (n) for the first five trapped modes. The dashed 
line through the cut-off frequencies separates the trapped modes to the right from the 
leaky modes to the left. Solid bands to the left marked A to F show the regions of coastal 
to deep sea amplification, r > 1. The observed power spectrum, S(f), is plotted to the left; 
pa(f) is the ratio of energy at the instrument to energy at the coast line, for normal inci- 
dence. The observed two-dimensional co-spectrum iT+(n, f) is contoured for values of 
0.03, 0.05, 0.10, 0.25, 0.50, 0-75, 0.90, with the area above 0.05 units shaded. The units 
designate the fractional contribution towards X(f) per spatial frequency band &a = 0.0159 c/ 
km. The dots show the observed positions of the ridge and the percentage energy associated 
with a particular mode. 
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6. The (f, q) diagram 
The contour Ck = 1.00 along the axes of figures 8 and 9 is the observed value to 

two significant figures. Similarly, Qk was found to measure 0.00 along the axes. 
These are the expected values for zero separation and zero frequency, and the 
precision with which they are attained is a measure of the fidelity of the observa- 
tions. For 7 = 0 the instruments were located within a few metres of one another; 
the result for f = 0 actually includes the effects of frequencies from 0 to 0.1 c/h 
and thus shows that for periods above 10 h the array does not differ from a point. 

The principal feature of the Ch(7, f )  plot is an alternating series of arched 
ridges and troughs which tend to be parallel to the axes for large values of 7 and 
f. The features are well defined. The first trough has minimum values of - 0.90, 
the first ridge has maximum values of 0.90 (at 7 = 104 Pet. miles, f = 3.5 c/h). 
This means that two instruments separated by 104 Pet. miles and recording 
through identical narrow filters peaked at 3.5 c/h will have nearly identical 
outputs, the mean-square difference being 1 - C2 = 0.19 times the variance of 
either record. Four ridges are easily traced, the last reaching peak values of 0.61. 
In  contrast, Qk(7,f) is so irregular that no sensible contours could be drawn. 

For Stokes edge waves over a beach of constant inclination p 

c&(r,f> + iQ&(r,f> = exp k i(4m27rf”/sP) 
with the sign corresponding to the wave direction. Thus if there is equal energy 
propagated in both directions, then Q;V = Q$ +Q; = 0,  whereas C& has a series 
of extremi whose axes are given by 

7 = w3/(47Tf2) 

with a = 1,3,5, ... for trough lines, and a = 2,4,6, .. . for ridge lines. This is not 
unlike the observed pattern. A typical point on the first ridge is 7 = 9km, 
f = 5 c/h, and this leads to a computed inclination 

/3 = 4 ? ~ ~ 7 f ~ / 2 g  = 0.011 

as compared to a measured inclination near shore of 0.013. Thus the C&(7)f) 
field gives some indication of the prominent role of Stokes edge waves. 

7. The (f, n) diagram 
Comparison between theory and observations is summarized in figures 10-12. 

The trapped modes 0-0, 1-1, . . . , IV-IV, and leaky modes (blackened) A, B, . . . , 
F are marked as in figure 3. The boundary between leaky and trapped modes is 
now much steeper, and the continuum occupies a small wedge to the left. This is 
an unfortunate consequence of the limit on spatial frequency resolution imposed 
by the dimensions of the array. But if we had doubled the array size, we should 
have experienced even further difficulties with loss of spatial non-stationarity . 
The ideal place to do the experiment would be a straight coast with a narrow shelf. 

The contours give the observed fractional energy distribution; these show a 
series of narrow bands (or ridges) whose crest (designated by dots) falls embarrass- 
ingly close to the computed f ( n )  relations, lying generally within a few percent. 

35 Fluid Mech. 20 
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The interpretation of the numerical values is best illustrated with examples. 
Table 1 gives the computed values of +T+Sn (the field contoured in figure 10) at 
4 c/h for the first nine bands of spatial frequency. Each of these bands has a 
width of 0.0159 c/km. The first is centred at 0 c/km and extends from - 0.00795 to 
+ 0.00795 c/km; the next is centred at 0.0159 c/km and extends from 0.00795 to 
0.02385 c/km, etc. The total fractional energy is found by adding the value at 

c/km 0.00 0.0159 0.0318 0.0477 0.0636 0.0795 0.0954 0-1113 0.1273 

*T+Sn 0.04 0.04 0.04 0.06 0.11 0.14 0.09 0.00 -0.02 
I I 

Y 

B for mode 0 0.40 

* T - h  0.00 -0.01 -0.02 -0.03 -0.04 -0.05 -0.04 -0.02 -0.00 
'. J 

Y 

Z for mode 0 -0.18 

TABLE 1. Fractional energy at  4 c/h per unit spatial frequency band 
(Sn = O.O159c/km) 

5.03 

Cycles per kilometre 
FIGURE 11. The co-spectrum &T+(n,f) not adjusted for spatial non-stationarity. For 

legend, see figure 10. 
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FIGURE 12. The quadrature spectrum $T-(n, f) is contoured for values of - 0.05, - 0.03, 
and 0.03. The shaded areas contain values between -0.05 and -0.07. For legend, see 
figure 10. 
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0 c/km to twice the values in all other bands (up to the spatial Nyquist frequency), 
thus allowing for positive and negative n:  

0 * 0 4 + 2 ( 0 ~ 0 4 + 0 ~ 0 4 + 0 * 0 6 + 0 ~ 1 1 + 0 ~ 1 4 + 0 ~ 0 9 + 0 ~ 0 0 - 0 ~ 0 2 +  ...). 

The sum is 0.98, differing slightly from unity owing to round-off error. The contri- 
bution from mode 0 (estimated to extend across bands 3 to 8) is twice 0-40, or 
80 yo, including northward and southward travelling waves. At 4 c/h the energy 
density is S ( f )  = 0.1 cmz(c/h)-l (figure 10, left inset), and the total energy in 
mode 0 is then 0.08 em2 (c/h)-l. 

Next, consider the situation at 7 c/h. The power spectrum (left margin) shows 
a typical spectral density of 0.025 em2 (c/h)-l. We find that 44 % of this amount, 
or 0.011 ern2 (c/h)-l, is contributed by the fundamental mode 0-0,40% by mode I, 
and 12 % by mode I1 or the continuum. This adds up to 96 %. Energy in the 
forbidden area between the trapped modes is very low, as it should be. At this 
frequency of 7 c/h the separation between normal incidence and mode I1 is only 
0.0159 c/km. Twice the maximum array length equals 2 x 21QPet. miles = 62.5 km 
and the inverse of this is 0.0159 km-l. Thus the estimates at 0 and 0.0159 c/km 
are not statistically independent.? Lack of spatial frequency resolution is 
particularly bothersome in trying to assess the relative contributions from the 
cut-off points of the normal modes, and thef-intercepts of the amplification bands. 
For example, the observed peak nearf = 8 c/h, n = 0 to 0.0159 c/km is associated 
either with amplification band E or the cut-off point of normal mode 111. 

Comparison of theory and observations leads to the following conclusions: 
(i) most of the energy is in trapped mode 0, though at frequencies of less than 
2 c/h it is impossible to distinguish between this mode and leaky mode A; 
(ii) trapped mode I contributes a maximum of 40 % near 7 c/h, and perhaps half 
this fraction at high frequencies and near cut-off; (iii) the contribution of trapped 
mode I1 is of the same order; (iv) the contribution from leaky modes is generally 
less than 10%; (v) the maximum of S ( f )  at 2.8 c/h corresponds in frequency 
either to the intercept n = 0 of leaky mode B, or to the cut-off frequency of 
trapped mode 0 ;  (vi) the curve p2(f)  on the left margin gives the power reduction 
a t  the instrument sites (500 m offshore) relative to the coast line (x = O).$ A nodal 
line crosses the instrument site a t  11 c/h for normal incidence, and the same 
result nearly applies to all modes except trapped mode 0 (which has no nodal 
line). The broad minimum in X ( f )  and the relative lack of contribution from 

In performing the Fourier transforms of C&(v , f )  one meets the customary problems 
associated with the abrupt termination for separations exceeding v0. Following the pro- 
cedure usually adopted in times series analyses (Blackman & Tukey 1958), we multiply 
C & ( v , f )  with ‘tapers’ which fade out smoothly as 7 approaches 710. This reduces side bands 
from sharp spectral peaks, but at the expense of somewhat widening the central peak. We 
have used three tapers: (i) TOP-HAT: H(7)  = 1 for 191 < ro andzero elsewhere; (ii) COSINE: 

H ( 7 )  = 1 + c 0 s 7 r ~ / ~ ~  for 171 < to and zero elsewhere; and (iii) PARZEN (1961): 

for 171 < +vo, 2(1- ?//70)s for +vo < lgl < rot and zero elsewhere. (iii) has no negative side 
bands and is useful for estimates in the vicinity of a strong peak. The top-hat taper is best 
for the peak itself, and the cosine taper is a useful compromise. Our discussion is based on 
the examination of all three transforms. 

Hfv) = 1 - 6tv/710)3 

$ The ratio of instrument power to incident power is r 2 ( f ) p 2 ( f ) .  
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trapped modes I and I1 between 10 and 12 c/h is then related to distance of the 
instrument from shore. 

Figure 12 shows the fractional difference between southward and northward 
travelling waves. The field T-(n,f) is largely confined to mode 0,  with some 
slight contributions to modes I and 11. At 4 c/h we find for mode 0 (see table 1): 

X;T+Gn = Z[X(n, f )  +S( -n,f)]Gn/S(f) = 2(0.40), 

2T-h  = X[S(n,f) - S( - n,f)] Gn/S(f) = 2( - 0.18), 

so that +[0.80 f ( - 0.36)] = 0.22, 0.58 

are the fractional contributions towards S( f )  from southward and northward 
travelling waves, respectively. At higher frequencies and for other modes the 
contributions from oppositely travelling waves are nearly the same. 

8. The situation at higher frequencies 
We have also computed (but not displayed) the (f, n) diagrams for frequencies 

from 0 to 60 c/h at intervals of 0.5 c/h; this is five times thef-scale in figures 10 to 
12; the n-scale is unchanged. Again, the gravest trapped modes can be traced, 
but not as precisely as previously because of the reduction in f-resolution by a 
factor of five. Modes 0 to V can be recognized. Mode 0 goes off the n-scale 
(n > 0.7 c/km) atf = 14 c/h; at higherf-values the mode is then associated with 
n-values above the spatial Nyquist limit, and its energy is folded back into the 
range 0-0.7 c/km. Similarly, modes I, 11, 111, IV, V, ... go off the n-scale a t  
f = 24,28,32,35,38, .. . c/h, and all their energy is folded back. Thus the diagram 
a t  higher f-values is subject to severe spatial aliasing. 

f ( C P )  10 15 20 25 30 35 40 45 50 55 60 
Relative energy density 0.5 1.9 1.4 0.8 0.6 0.9 2.1 1.0 1-1 1.4 

TABLE 2. Relative energy density in the continuum within stated 5c/km bands. A 
relative energy of 1 signifies that the fractional energy in the continuum corresponds to an 
even distribution over all n-values, from 0 to 0.7 c/km 

The purpose of the computations at  higher frequencies is to assess the relative 
contributions from trapped and leaky modes. In  table 2 the individual (trapped 
and leaky) modes are deliberately smudged into 5 c/h bands. At frequencies 
below 10 c/h the continuum cannot be separated from the cut-offs of the normally 
incident modes, but there is every indication that the latter contain most of the 
energy. In  the band 10-15 c/h the continuum occupies only the narrow wedge 
from n = 0 to n = 0.03 c/km out of the total range 0-0.7 c/km, and in this narrow 
wedge the energy density is 0.5 times the mean value, so that the continuum 
energy is 0.5(0.03/0.7) = 0.02. Accordingly, 98 % of the energy is in the discrete 
modes. At higher frequencies the continuum density fluctuates between 4 and 2 
times the mean density, but the continuum energy remains relatively small as 
compared to the discrete energy. 
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9. The situation at lower frequencies 
A further complication is intrbduced when the depth profile beyond the 

continental borderland is taken into account (figures 1 and 2). So far the (f, n) 
diagrams were computed with the assumption that the borderland extends 

0‘ 

Cycles per kilometre 
FIQURE 13. The computed (j, n) diagram for a-b continuation, showing trapped modes 
0, 1’, I1 , ..., and leaky modes A, B’, C’, . . . (see legend figure 3). The shaded bands refer to 
such combinations off and n for which waves at x = 0 and x = 100 km are out-of-phase. 

indefinitely in the seaward direction. Inasmuch as the wave energy is essentially 
confined to a coastal strip whosewidth is of the order of the longshore wavelength, 
the present approximation is adequate for waves shorter than the width of the 
borderland, i.e. n-l < 200 km. Longer waves reach seaward beyond the shallow 
(1 km) borderland into the deep (4 km) Pacific basin, and these are associated 
with a new set of trapped and leaky modes that are tuned to the dimensions of 
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the entire borderland. The required modification in going from figure 3 (for 
profile *b) to figure 13 (for a-b continuation) can be visualized as follows. The 
dashed line separating trapped and leaky modes is rotated counterclockwise so 
as to further confine the area occupied by the continuum. The ‘new’ trapped 
mode 0’ is only slightly altered as compared to the ‘old’ 0. New modes 1’, 
11‘, . . . have relatively closely spaced cut-off frequencies along the ‘new ’ cut-off 
line. Mode I’ crosses the old cut-off line near cut-off I and merges with I for large 
f and n. Mode 11’ runs alongside I’ to near cut-off I ,  then follows the old cut-off 
line to cut-off 11, and merges with I1 for largef and n. Similarly 111’ merges with 
111, etc. In  the a-b continuation a band of mode lines runs along the old a-b 
cut-off line. In  the f or n plane that part of the a-b branch line between its 
branch point and the a-b continuation branch point is replaced by a chain of 
roots of equation (9). Asf and n decrease, each root successively passes through 
the new branch point and becomes a new leaky mode in the shrunken continuum. 
These are the resonances in the open organ pipe sense of the borderland; the 
harmonic E‘ approaches the first shelf resonance B, and the combined borderland 
and shelf resonances will make this particular leaky mode more prominent than 
others. To summarize, there is a borderland ‘fine structure ’ at the lowfrequencies, 
but the situation is essentially unchanged at high frequencies. 

The shaded regions in figure 13 refer to those areas in (f, n) space for which an 
instrument at the coast would be out-of-phase with an instrument at San 
Clemente Island 100 km seaward (computed using Haskell matrices, Q 2). We 
had previously made simultaneous readings at two such stations (Snodgrass et al. 
1962) and found sudden phase reversals, with records being in phase for 0- 
0.72 c/h, out-of-phase between 0.72 and 1.6 c/h, and in phase again above 
1.6 c/h. The observed out-of-phase limits 0.7-1-6 c/h are comparable in magni- 
tude to the computed limits, 0.85-2.15 c/h at normal incidence, 0.90-2.25 c/h 
at glancing incidence, but the situation is too complex to assign the reversals 
to any particular modes. The assumption of straight parallel contours is no longer 
tenable a t  these very low frequencies. 

10. Bandwidth 
The interpretation of the width of the observed bands in figures 10-12 could be 

interesting. Small-scale wiggles in the coast line and bottom contours must cause 
scattering from one trapped mode to another, and scattering from the trapped 
mode into the continuum and vice versa. Such effects would broaden the 
theoretical linef(n) into a band, and the observed broadening could in turn be 
interpreted in terms of the coastal scattering cross-section. Scattering inter- 
actions, even if they are weak, must play an essential role in determining the 
distribution of the energy among the various modes. 

But before we can interpret the measured broadening along such lines we must 
be sure i t  does not arise from more mundane circumstances. I n  the first place the 
depth contours vary along the coast. I n  figure 3 we have plotted the theoretical 
f (n)  relations for two rather extreme profiles; the separation of lines a-b from 
lines c-d is small compared to the measured bandwidth and this does not appear 
to be an important source of line broadening. 
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Next we consider the broadening associated with the limited resolution (time 
and space). I n  the case of a.one-dimensional process, x ( t ) ,  the results are familiar. 
The autocorrelation of x ( t )  is multiplied by some appropriate fading function, and 
the Fourier transform is then convoluted with the Fourier transform of the 
fading function. We have used the Parzen fading function (see $7, first footnote), 
and its Fourier transform is 

K(  f) = $(sin $nF/$nF)*, 
where F = f/Sf is a dimensionless frequency, in units of bandwidth 8f. Now if the 
spectrum is a delta function, then the computed spectrum is K(F-#) ,  and its 
mean-square width is 

12 
ax = - 

4 n  712 * 

3 (")3 
P2K(F-P)dH= - - 

The R.M.S. bandwith in units of frequency Sf = 0.1 c/h is ( 12/n2)4 Sf = O.llc/h. 
For spatial frequency, 6n = 1/2L = 0.0159 c/km, and the theoretical R.M.S. 

bandwidth is ( 12/n2)4/2L = 0.018 c/km. (22) 

Assume all the energy to be concentrated along a linef(n). Because of the 
limited f-resolution the line is spread over 0.1 1 c/h along thef-axis, and similarly 
over 0.018 c/km along the n-axis. For lines of the observed slope df/dn it turns 
out that essentially all the widening is due to limited n-resolution, and the width 
of the band along the f-axis is simply the component 0.018 c/km . Gf/Sn. Poor 
spatial resolution (a short array) cannot be overcome by good temporal resolution 
(a long record). The observed R.M.S. width parallel to the n-axis (using the 
observed values T+(n, f) for mode 0 )  is 0.02 c/km, as compared to 0.018 c/km 
because of limited n-resolution. There is then no evidence for broadening over and 
above that due to limited spatial resolution. 

11. Coriolis splitting 
We have discussed the splitting of modes by the continental borderland ($9). 

An additional source of splitting is the rotation of the Earth. Reid (1958) has 
shown that if fo(n) designates the frequency of mode 0 at some fixed n in the 
absence of rotation, then 

fo + +8f, fo - QSf (Jf = 2 sin #/TI 
are the frequencies of southward and northward travelling waves at latitude # 
along the west coast of a continent (as in our experiment), with T designating the 
length of day. Note that Sf reverses sign across the equator; in general, the fre- 
quency for a fixed n of wavea moving to the left (looking seaward) exceeds those 
moving to the right in the northern hemisphere. The experiment was conducted 
at latitude 33", so that Sf = 1/T = 1/24 c/h approximately, about half the reso- 
lution attained in the experiment. The detection of any Coriolis effect must be 
marginal, at best. 

Normal modes were found to occupy narrow bands in (f, n) space. The fractional 
spectra of south- and northward travelling waves at some fixed n, can be written 

- &dX(T+Gn & T-8n) k exp { - k2[ f - ( f o  k +Sf )I2]>. 
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The difference, southward minus northward, gives T-(n,f) and can be compared 
to cuts parallel to thef-axis across the observed T-(n,f) band. The Coriolis shift 
is small compared to the central frequency and small compared to the bandwidth, 

and so the difference south- minus northward reduces to 
T-(n,f) = n-*k exp { - P(f-f,,)Z} [CT-an + ~T+Snkz@(f-f,)]. 

The Coriolis effect is to shift the central frequency of the band fromf, to 
fo + +3’f(CT+Sn)/(CT-Sn) 

and to introduce a skewness 
2-3[kSf (~T+Sn) / (CT-s)]3 .  

in the distribution about the band centre. A typical value for (C;T+Gn)/(Z;T-Gn) 
is - 5,  and the resulting shift is by - 0.1 c/h, too low to be measured. The com- 
puted skewness varies from - 0.003 to - 0.4. Observed skewness in the T- field 
is badly scattered; a representative value is 0.5. The conclusion is that we have 
failed to observe the Coriolis effect on edge waves because of the limited n- 
resolution. 

or Sf < f,, @f < 1, 

12. Summary 
We have measured the relative contributions, X ( n , f ) ,  towards the variance in 

few well- the oscillation of sea Ievel. Nearly all of the contribution comes from 
defined bands. The results can be summarized in terms of the moments 

K, = j n l ~ ( n , f )  dn 

of the bands. K” gives the total band contributions. The trapped mode 0 contains 
most of the energy, but modes I, 11, I11 contribute significantly. Comparisons of 
moments for positive and negative n values show that comparable energies are 
propagated up and down the coast. The contribution from the leaky modes is 
small. 

The moment K~ permits a comparison of computed and observed dispersion 
relations, f(n). The agreement is good. The second moment (properly normalized) 
is a measure of bandwidth, and this is determined by the spatial resolution in the 
experiment. The third moment measures skewness. One source of skewness is 
‘Coriolis-splitting ’, but this effect is too small to be detectable. 

It is surprising that so little of the energy can be associated with waves incident 
from the open sea, and so much with the waves trapped in the continental wave 
guide. This may simply be due to the fact that energy is spread fairly evenly 
along the entire permissible n-axis and so little n-space is available to the 
continuum. The continuum extends from n = 0 to n = f / ( g H ) * ,  H being the 
(constant) depth beyond the wave guide. The discrete spectra extends from there 
to n = 2nf 2/g,8, where ,8 is the (constant) inclination near shore (this formula for 
fundamental Stokes edge waves follows from equation (1)). The ratio of con- 
tinuum n-space to discrete n-space at some frequency f is then 
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Setting f = 10 c/h, = 0.02, H = 1 km gives a ratio 0.11; for H = 4 km it is 
0.055. The ratio can be interpreted geometrically as the length of the incident 
waves in deep water, f -1(gH)*, divided‘by the wave guide ‘width’ 2nHIP. 

Walter Munk, Frank Snodgrass and Freeman Gilbert 

We are grateful to Klaus Hasselmann and Michael Longuet-Higgins for many 
suggestions concerning this manuscript. 
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